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Abstract

In this paper, we propose a learning-based approach to

the task of automatically extracting a “wireframe” repre-

sentation for images of cluttered man-made environments.

The wireframe (see Fig. 1) contains all salient straight lines

and their junctions of the scene that encode efficiently and

accurately large-scale geometry and object shapes. To this

end, we have built a very large new dataset of over 5,000

images with wireframes thoroughly labelled by humans. We

have proposed two convolutional neural networks that are

suitable for extracting junctions and lines with large spatial

support, respectively. The networks trained on our dataset

have achieved significantly better performance than state-

of-the-art methods for junction detection and line segment

detection, respectively. We have conducted extensive ex-

periments to evaluate quantitatively and qualitatively the

wireframes obtained by our method, and have convincingly

shown that effectively and efficiently parsing wireframes

for images of man-made environments is a feasible goal

within reach. Such wireframes could benefit many impor-

tant visual tasks such as feature correspondence, 3D recon-

struction, vision-based mapping, localization, and naviga-

tion. The data and source code are available at https:

//github.com/huangkuns/wireframe.

1. Introduction

How to infer 3D geometric information of a scene from

2D images has been a fundamental problem in computer

vision. Conventional approaches to build a 3D model typ-

ically rely on detecting, matching, and triangulating local

image features (e.g. corners, edges, SIFT features, and

patches). One great advantage of working with local fea-

tures is that the system can be somewhat oblivious to the

scene, as long as it contains sufficient distinguishable fea-

tures. Meanwhile, modern applications of computer vi-

sion systems often require an autonomous agent (e.g., a

car, a robot, or a UAV) to efficiently and effectively negoti-

ate with a physical space in cluttered man-made (indoor or

outdoor) environments. Such scenarios present significant

Figure 1. First row: Examples of typical indoor or outdoor scenes

with geometrically meaningful wireframes labelled by humans;

Second row: Wireframes automatically extracted by our method.

challenges to the current local-feature based approaches:

Man-made environments typically consist of large texture-

less surfaces (e.g. white walls or the ground); or they may

be full of repetitive patterns hence local features are am-

biguous to match; and the visual localization system is re-

quired to work robustly and accurately over extended routes

and sometimes across very large baseline between views.

Nevertheless, the human vision system seems capable of

effortlessly localizing or navigating among such environ-

ments arguably by exploiting larger-scale (global or semi-

global) structural features or regularities of the scene. For

instance, many works [6, 21, 14, 11, 35] have demonstrated

that prior knowledge about the scene such as a Manhat-

tan world could significantly benefit the 3D reconstruction

tasks. The Manhattan assumption can often be violated in

cluttered man-made environments, but it is rather safe to

assume that man-made environments are dominantly piece-

wise planar hence rich of visually salient lines (intersection

of planes) and junctions (intersection of lines). Conceptu-

ally, such junctions or lines could just be a very small “sub-

set” among the local corner features (or SIFTs) and edge

features detected by conventional methods, but they already

encode most information about larger-scale geometry of the

scene. For simplicity, we refer to such a set of lines and their
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intersected junctions collectively as a “wireframe”.1

The goal of this work is to study the feasibility of devel-

oping a vision system that could efficiently and effectively

extract the wireframe of a man-made scene. Intuitively, we

wish such a system could emulate the level of human per-

ception of the scene geometry, even from a single image.

To this end, we have collected a database of over 5,000 im-

ages of typical indoor and outdoor environments and asked

human subjects to manually label out all line segments and

junctions that they believe to be important for understand-

ing shape of regular objects or global geometric layout of

the scene.2 Fig. 1 (first row) shows some representative

examples of labelled wireframes.

In the literature, several methods have been proposed to

detect line segments [45] or junctions [35, 47] in the image,

and to further reason about the 3D scene geometry using

the detected features [21, 11, 10, 34, 51]. These methods

typically take a bottom-up approach: First, line segments

are detected in the image. Then, two or more segments

are grouped to form candidate junctions. However, there

are several inherent difficulties with this approach. First,

by enumerating all pairs of line segments, a large number

of intersections are created. But only a very small subset

of them are true junctions in the image. To retrieve the true

junctions, various heuristics as well as RANSAC-based ver-

ification techniques have been previously proposed. As re-

sult, such methods are often time consuming and even break

down when the scene geometry and texture become com-

plex. Second, detecting line segments itself is a difficult

problem in computer vision. If one fails to detect certain

line segments in the image, then it would be impossible for

the method to find the associated junctions. Third, since all

existing methods rely on low-level cues such as image gra-

dients and edge features to detect line segments and junc-

tions, they are generally unable to distinguish junctions and

line segments that are of global geometric importance with

those produced by local textures or irregular shapes.

In view of the fundamental difficulties of existing meth-

ods, we propose a complementary approach to wireframe

(junctions and line segments) detection in this paper. Our

method does not rely on grouping low-level features such as

image gradients and edges. Instead, we directly learn detec-

tors for junctions and lines of large spatial support from the

above large-scale dataset of manually labeled junctions and

lines. In particular, inspired by the recent success of con-

volutional neural networks in object detection, we design

novel network architectures for junction and line detection,

respectively. We then give a simple but effective method to

1In architecture design, a wireframe is often referred to a line drawing

of a building or a scene on paper. Interpretation of such line drawings of

3D objects has a long history in computer vision dated back to the ’70s and

’80s [19, 3, 42, 26].
2For simplicity, this work is limited to wireframes consisting of straight

lines. But the idea and method obviously apply to wireframes with curves.

establish incidence relationships among the detected junc-

tions and lines and produce a complete wireframe for the

scene. Fig. 1 (second row) shows typical results of the

proposed method. As one can see, our method is able to

detect junctions formed by long line segments with weak

gradient while significantly reducing the number of false

detections. In addition, as the labelled junctions and line

segments are primarily associated with salient, large-scale

geometric structures of the scene, the resulting wireframe is

geometrically more meaningful, emulating human percep-

tion of the scene’s geometry.

Contributions of this work include: (i) the establishment

of a large dataset for learning-based wireframe detection of

man-made environments, and (ii) the development of ef-

fective, end-to-end trainable CNNs for detecting geomet-

rically informative junctions and line segments. Comparing

with existing methods on junction and line segment detec-

tion, our learning-based method has achieved, both quan-

titatively and qualitatively, superior performances on both

tasks, hence convincingly verified the feasibility of wire-

frame parsing. Furthermore, both junction and line detec-

tion achieves almost real-time performance at the testing

time, thus is suitable for a wide range of real-world appli-

cations such as feature correspondence, 3D reconstruction,

vision-based mapping, localization and navigation.

Related Work
Edge and line segment detection. Much work has been

done to extract line segments from images. Existing meth-

ods are typically based on perceptual grouping of low-level

cues (i.e., image gradients) [33, 45, 2, 23, 24]. A key chal-

lenge of these local approaches is the choice of some ap-

propriate threshold to discriminate true line segments from

false conjunctions. Another line of work extends Hough

transform to line segment detection [30, 15, 50]. While

Hough transform has the ability to accumulate informa-

tion over the entire image to determine the presence of

a line structure, identifying endpoints of the line segment

in the image remains a challenge [1]. Recently, machine

learning based approaches have been shown to produce

the state-of-the-art results in generating pixel-wise edge

maps [8, 48, 28]. But these methods do not attempt to ex-

tract straight line segments from the image.

Junction detection. Detecting and analyzing junctions in

real-world images remains a challenging problem due to

a large number of fragmented, spurious, and missing line

segments. In the literature, there are typically two ways

to tackle this problem. The first group of methods focuses

on operators based on local image cues, such as the Harris

corner detector [18]. However, local junction detection is

known to be difficult, even for humans [31]. More recent

methods detect junctions by first locating contours (in nat-

ural images) [25] or straight line segments (in man-made

environments) [21, 35, 10, 47] and then grouping them to
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Figure 2. Example images of our wireframe dataset, which covers

a wide range of man-made scenes with different viewpoints, light-

ing conditions, and styles. For each image, we show the manually

labelled line segments (first row) and the ground truth junctions

derived from the line segments (second row).

form junctions. As we discussed before, such bottom-up

methods are (i) sensitive to scene complexity, and (ii) vul-

nerable to imperfect line segment detection results.

Line- and junction-based geometric reasoning. Knowl-

edge about junctions and the associated line structures is

known to benefit many real-world 3D vision tasks. From a

single image, a series of recent work use these features to

recover the 3D layout of the scene [21, 35, 34, 51]. Mean-

while, observing that the junctions impose incident con-

straints on the adjacent line segments, [20] devises a method

for 3D reconstruction of lines without explicitly matching

them across views, whereas [46] proposes a surface scaffold

structure that consists of sets of connected edges to regular-

ize stereo-based methods for building reconstruction. Fur-

thermore, [10] uses line segments and junctions to develop

a robust and efficient method for two-view pose estimation,

and [49] systematically studies how knowledge about junc-

tions can affect the complexity and number of solutions to

the Perspective-n-Line (PnL) problem.

Machine learning and geometry. There is a large body

of work on machine learning based approach to inferring

pixel-level geometric properties of the scene, such as the

depth [40, 9], and the surface normal [12, 13]. But few

work has been done on detecting mid/high-level geometric

primitives with supervised training data. Recently, [17] pro-

poses a method to recognize planes in a single image, [16]

uses SVM to classify indoor planes (e.g., walls and floors),

and [27, 39, 5] train fully convolutional networks (FCNs) to

predict “informative” edges formed by the pairwise inter-

sections of room faces. However, none of the work aims to

detect highly compressive vectorized junctions or line seg-

ments in the image, let alone a complete wireframe.

2. A New Dataset for Wireframe Detection

As part of our learning-based framework to wireframe

detection, we have collected 5,462 images of man-made

environments. Some examples are shown in Fig. 2. The

scenes include both indoor environments such as bedroom,

living room, and kitchen, and outdoor scenes, such as house

and yard. For each image, we manually labelled all the line

segments associated with the scene structures. Here, our

focus is on the structural elements in the image, that is, ele-

ments (i.e., line segments) from which meaningful geomet-

ric information of the scene can be extracted. As a result,

we do not label line segments that are associated with tex-

ture (e.g., curtains, tree leaves), irregular or curved objects

(e.g., sofa, humans, plants), shadows etc.

With the labelled line segments, ground truth junction

locations and their branches can be easily obtained from the

intersection or incidence relationships among two or more

line segments in the image (Fig. 2, second row). Note that,

unlike previous works [35, 34], we do not restrict ourselves

to Manhattan junctions, which are formed by line segments

aligned with one of three principal and mutually orthogonal

directions in the scene. In fact, many scenes in our dataset

do not satisfy the Manhattan world assumption [4]. For ex-

ample, the scene depicted in the last column of Fig. 2 has

more than two horizontal directions.

In summary, our annotation in each image includes a set

of junction points P = {pn}
N
n=1 and a set of line segments

L = {lm}Mm=1. Each junction p is the intersection of sev-

eral, say R, line segments, called its branches. The coor-

dinates of p are denoted as x ∈ R
2 and its line branches

are recorded by their angles {θr}
R
r=1. The number R is

known as the order of the junction, and the typical “L”,

“Y ”, and “X”-type junctions have orders R = 2, 3, and

4, respectively. Each line segment is represented by its two

end points: l = (p1,p2). Hence, the wireframe, denoted as

W , records all incidence and intersection relationships be-

tween junctions in P and lines in L. It can be represented

by an N × M matrix W whose nm-th entry is 1 if pn is

on lm, and 0 otherwise. Notice that two line segments are

intersected at some junction if and only if the correspond-

ing entry in W TW is nonzero; and similarly WW T for

connected junctions.

3. Wireframe Detection Method

Recently, deep convolutional neural networks (CNNs)

such as [41, 38, 37] have shown impressive performance

in object detection tasks. Utilizing the dataset we have, we

here design new, end-to-end trainable CNNs for detecting

junctions and lines, respectively, and then merge them into

a complete wireframe. Fig. 3 shows the overall architecture

of our proposed networks and method. Note that we choose

different network architectures for junctions and lines due

to the nature of their geometric properties, which we will

elaborate below.
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Figure 4. Representation of a junction with three branches.

3.1. Junction Detection

3.1.1 Design Rationale

Our design of the network architecture is guided by several

important observations about junctions.

Fully convolutional network for global detection. As we

mentioned before, local junction detection is a difficult task,

which often leads to spurious detections. Therefore, it is im-

portant to enable the network to reason globally when mak-

ing predictions. This motivates us to choose a fully convolu-

tional network (FCN), following its recent success in object

detection [37]. Unlike other popular object detection tech-

niques that are based on sliding windows [41] or region pro-

posals [38], FCN sees the entire image so it implicitly cap-

tures the contextual information about the junctions. Simi-

lar to [36, 37], our network divides the input image into an

H×W mesh grid, see Fig. 4 right. If the center of a junction

falls into a grid cell, that cell is responsible for detecting it.

Thus, each ij-th cell predicts a confidence score cij reflect-

ing how confident the model thinks there exists a junction in

that cell. To further locate the junction, each ij-th cell also

predicts its relative displacement xij w.r.t. the center of the

cell. Note that the behavior of the grid cells resembles the

so-called “anchors”, which serve as regression references in

the latest object detection pipelines [38, 36, 22].

Multi-bin representation for junction branches. Unlike

traditional object detection tasks, each cell in our network

needs to make different numbers of predictions due to the

varying number of branches in a junction. To address this

issue, we borrow the idea of spatial grid and propose a new

multi-bin representation for the branches, as shown in Fig. 4

left. We divide the circle (i.e., from 0 to 360 degrees) into

K equal bins, with each bin spanning 360
K

degrees. Let the

center of the k-th bin be bk, we then represent an angle θ
as (k,∆k), if θ fall into the k-th bin, where ∆k is the angle

residual from the center bk in the clockwise direction. Thus,

for each bin we regress to this local orientation ∆k.

As a result, our network architecture consists of an en-

coder and two sets of decoders. The encoder takes the

whole image as input and produces an H × W grid of

high-level descriptors via a convolutional network. The

decoders then use the feature descriptors to make junc-

tion predictions. Each junction is represented by pij =
(

xij , cij , {θijk, c
θ
ijk}

K
k=1

)

, where xij is the coordinates of

the junction center, cij ∈ [0, 1] is the confidence score for

the presence of a junction in the ij-th grid cell, θijk is the

angle for the branch in the k-th bin, and cijk is the con-

fidence score for the bin. The two sets of decoders pre-

dict the junction center and the branches respectively. Each

FCN decoder is simply a convolutional layer followed by a

regressor, as shown in Fig. 3 top.

Unlike local junctions, the junctions we aim to detect

each is formed by the intersection of two or more long line

segments (the branches). While the junction detection does

not explicitly rely on edge/line detection as an intermediate

step, the knowledge about the associated edges is indirectly

learned by enforcing the network to make correct detection

of the branches and their directions.

3.1.2 Loss Function

To guide the learning process towards the desired output,

our loss function consists of four modules. Given a set of

ground truth junctions P = {p1, . . . ,pN} in an image, we
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write the loss function as follows:

L = λc
confL

c
conf +λc

locL
c
loc+λb

confL
b
conf +λb

locL
b
loc. (1)

In the following, we explain each term in more detail.

Junction center confidence loss Lc
conf . The junction cen-

ter confidence decoder predicts a score ĉij , indicating the

probability of a junction for each grid cell. Let cij be the

ground truth binary class label, we use the cross-entropy

loss:

L
c
conf = −

1

H ×W

∑

i,j

E(ĉij , cij). (2)

Junction center location loss Lc
loc. The junction center

location decoder predicts the relative position x̂ij of a junc-

tion for each grid cell. We compare the prediction with each

ground truth junction using the ℓ2 loss:

L
c
loc = −

1

N

N
∑

n=1

‖x̂f(n) − xf(n)‖
2
2, (3)

where f(n) returns the index of the grid cell that the n-th

ground truth junction falls into, and xf(n) is the relative

position of the ground truth junction w.r.t. that cell center.

Junction branch confidence loss Lb
conf . The junction

branch confidence decoder predicts a score ĉθijk for each

bin in each grid cell, indicating the probability of a junction

branch in that bin. Similar to the junction center confidence

loss above, we use the cross-entropy loss to compare the

predictions with the ground truth labels. The only differ-

ence is that we only consider those grid cells in which a

ground truth junction is present:

L
b
conf = −

1

N ×K

N
∑

n=1

K
∑

k=1

E(ĉθf(n),k, c
θ
f(n),k). (4)

Junction branch location loss Lb
loc. Similar to the junction

center location loss, we first decide, for each ground truth
junction, the indices of the bins that its branches fall into,
denoted as g(r), r = 1, . . . , Rn, where Rn is the order of
pn. Then, we compare our predictions with the ground truth
using the ℓ2 loss:

L
b
loc = −

1

N

N
∑

n=1

( 1

Rn

Rn
∑

r=1

‖θ̂f(n),g(r) − θf(n),g(r)‖
2
2

)

. (5)

Implementation details. We construct our model to en-

code an image into 60×60 grid of 256-dimensional features.

Each cell in the grid is responsible for predicting if a junc-

tion is present in the corresponding image region. Our en-

coder is based on Google’s Inception-v2 model [43], which

extracts multi-scale features and is well-suited for our prob-

lem. For our problem, we only use the early layers in the

Inception network, i.e., the first layer to “Mixed 3b”. Each

decoder consists of a 3 × 3 × 256 convolutional layer, fol-

lowed by a ReLU layer and a regressor. Note that the regres-

sor is conveniently implemented as 1× 1× d convolutional

layer, where d is the dimension of the output.

The default values for the weights in Eq. (1) are set to

the following: λc
conf = λb

conf = 1, λc
loc = λb

loc = 0.1.

We choose the number of bins K = 15. Our network is

trained from scratch with the Stochastic Gradient Descent

(SGD) method. The momentum parameter is set to 0.9, and

the batch size is set to 1. We follow the standard practice in

training deep neural networks to augment the data with im-

age domain operations including mirroring, flipping upside-

down, and cropping. The initial learning rate is set to 0.01.

We decrease it by a multiple of 0.1 after every 100,000 iter-

ations. Convergence is reached at 300,000 iterations.

3.2. Line Detection

Next we design and train a convolutional neural network

(Fig. 3 bottom) to infer line information from RGB images.

The network predicts for each pixel p whether it falls on

a (long) line l. To suppress local edges, short lines, and

curves, the predicted value h(p) (of the heat map) at pixel

p is set to be the length of the line it belongs to. Given an

image with ground truth lines L, the target value for h(p) is

defined to be:

h(p) =

{

d(l) p is on a line l in L,

0 p is not on any line in L,
(6)

where d(l) is the length of the line l. Let ĥ(p) be the esti-

mated heatmap value, then the loss function we try to mini-

mize the ℓ2 loss:

L =
∑

i,j

‖ĥ(pij)− h(pij)‖
2
2. (7)

where the sum is over all pixels of the image.

Implementation details. The network architecture is in-

spired by the Stacked Hourglass network [32]. It takes a

320×320×3 RGB image as input, extracts a 80×80×256
feature maps via three Pyramid Residual Modules (PRM),

see Fig. 3 bottom. The feature maps then go through five

stacked hourglass modules, followed by two fully convolu-

tional and ReLU layers (5 × 5 × 32 and 5 × 5 × 16) and

a 5 × 5 × 1 convolutional layer to output a 320 × 320 × 1
pixel-wise heat map. The detailed pyramid residual module

and stacked hourglass module can be found in [32].

During training, we adopt the Stochastic Gradient De-

scent (SGD) method. The momentum parameter is set to

0.9, and the batch size is set to 4. Again, we augment

the data with image domain operations including mirroring

and flipping upside-down. The initial learning rate is set to

0.001. We decrease it by a multiple of 0.1 after 100 epochs.

Convergence is reached at 120 epochs.

Notice that we have used an Inception network for junc-

tion detection whereas an hourglass network for line detec-

tion. In junction detection, we are not interested in the entire

support of the line, hence the receptive field of an Inception

network is adequate for such tasks. However, we find that

for accurately detecting lines with large spatial support, the

Stacked Hourglass network works much better due to its

large (effective) receptive field. In addition, our experiment
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also shows that above length-dependent ℓ2 loss is more ef-

fective than the cross-entropy cost often used in learning-

based edge detection.

3.3. Combine Junctions and Lines for Wireframe

The final step of the system is to combine the results

from junction detection and line detection to generate a

wireframe W for the image, which, as mentioned before,

consists of a set of junction points P connected by a set of

line segments L.

Specifically, given a set of detected junctions {pi}
N
i=1

and a line heat map h, we first apply a threshold w to convert

h into a binary map M. Then, we construct the wireframe

based on the following rules and procedure:

1. The set P is initialized with the output from the junc-

tion detector. A pair of detected junctions p and q ∈ P

are connected by a line segment l = (p, q) if they are

on (or close to be on) each other’s branches, and we

add this segment l to L. If there are multiple detected

junctions on the same branch of a junction point p, we

only keep the shortest segment to avoid overlap.3

2. For any branch of a junction p that is not connected

to any other junction, we attempt to recover additional

line segment using M. We first find the farthest line

pixel qM (pixel p is a line pixel if M(p) = 1) that is

also on the ray starting at p along the branch. Then,

we find all the intersection points {q1, . . . , qS} of line

segment (p, qM) with existing segments in L. Let

q0 = pi and qS+1 = qM, we calculate the line sup-

port ratio κ(qs−1, qs), s = {1, . . . , S, S+1}, for each

segment. Here, κ is defined as the ratio of the number

of line pixels to the total length of the segment. If κ
is above a threshold, say 0.6, we add the segment to L

and its endpoints to P .

Notice that both the sets P and L may have two sources

of candidates. For the junction set P , besides those di-

rectly detected by the junction detection, the line segments

could also produce new intersections or endpoints that were

missed by the junction detection. For the line segment set

L, it could come from branches of the detected junctions

and the line detection.

We leave more detailed description of the algorithm to

the supplementary material. Of course, there could be more

advanced ways to merge the detected junctions and line heat

map which we will explore in future work. Nevertheless,

from our experiments (see next section), we find that the

results from junction detection and line detection are rather

complementary to each other and the above simple proce-

dure already produces rather decent results.

3Hence we are less interested in detecting a straight line with the

longest possible support, instead, we are interested in its incidence rela-

tionship with other lines and junctions.

4. Experiments

In this section, we conduct extensive experiments to

evaluate the quality of junctions and final wireframes gen-

erated by our method, and compare it to the state-of-the-

art. All experiments are conducted on one NVIDIA Titan X

GPU device. In testing phase, our method runs at about two

frames per second, thus our method is potentially suitable

for applications which require real-time processing.

4.1. Datasets and Evaluation Metrics

For performance evaluation, we split our wireframe

dataset into a training set and a testing set. Among the 5,462

images in the dataset, 5,000 images are randomly selected

for training and validation, and the remaining 462 images

are used for testing. For junction detection (Section 4.2),

we compare the junctions detected by any method with the

ground truth junctions (Fig. 2, second row). For wireframe

construction (Section 4.3), we compare the line segments

detected by any method with the ground truth line segments

labeled by human subjects (Fig. 2, first row).

For both junction detection and wireframe construc-

tion experiments, all methods are the evaluated quantita-

tively by means of the recall and precision as described

in [29, 25, 47]. In the context of junction detection, recall is

the fraction of true junctions that are detected, whereas pre-

cision is the fraction of junction detections that are indeed

true positives. In the context of wireframe construction, re-

call is the fraction of line segment pixels that are detected,

whereas precision is the fraction of line segment pixels that

are indeed true positives.

Specifically, let G denote the set of ground truth junc-

tions (or line segment pixels), and Q denote the set of junc-

tions (or line segment pixels) detected by any method, the

precision and recall are defined as follows:

Precision
.
= |G ∩Q|/|Q|, Recall

.
= |G ∩Q|/|G|. (8)

Note that, following the protocols of previous work [29, 25,

47], the particular measures of recall and precision allow

for some small tolerance in the localization of the junctions

(or line segment pixels). In this paper, we set the tolerance

to be 0.01 of the image diagonal.

4.2. Junction Detection Comparison

We compare our junction detection method with two

recent methods, namely Manhattan junction detection

(MJ) [35] and a contrario junction detection (ACJ) [47].

MJ [35]: This method detects Manhattan junctions formed

by line segments in three principal orthogonal directions

using a simple voting-based scheme. As the authors did

not release their code, we use our own implementation

of the method. Line segments are first detected using

LSD [45], and then clustered using J-Linkage [44] to ob-

tain the vanishing points. Note that this method only ap-
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Figure 5. The precision-recall curves of different junction detec-

tion methods on our test dataset.

plies to scenes that satisfy the Manhattan world assump-

tion. For fair comparison, we only keep the images in

which three principal vanishing points are detected. An

important parameter in our implementation is the maxi-

mum distance dmax between a line segment and a point

p for that line segment to vote for p. We vary the value

dmax ∈ {10, 20, 30, 50, 100, 200, 300, 500} pixels.

ACJ [47]: This method relies on statistical modeling of im-

age gradients and an a contrario approach to detect junc-

tions. Specifically, meaningful junctions are detected as

those which are very unlikely under a null hypothesis H0,

which is defined based on the distribution of gradients of

arbitrary natural images. In the method, each candidate

junction is associated with a strength value depending on

the image gradients around it. Then, the candidate junc-

tion is validated with a threshold, which is derived by con-

trolling the number of false detections, ǫ, in an image fol-

lowing H0. For the experiments, we use the implemen-

tation provided by the authors of [47] and vary the value

ǫ ∈ {10−3, 10−2, 10−1, 1, 101, 102, 103}.

Performance comparison. Fig. 5 shows the precision-

recall curves of all methods on our new dataset. For our

method, we vary the junction confidence threshold τ from

0.1 to 0.9. As one can see, our method outperforms the

other methods by a large margin. Fig. 7 compares qualita-

tively the results of all methods on our test data. Compared

to the other two methods, MJ tends to miss important junc-

tions due to the imperfect line segment detection results.

Moreover, since MJ relies on local image features, it no-

ticeably produces quite a few repetitive detections around

some junctions. By directly modeling the image gradients,

ACJ is able to find most junctions on the scene structures.

However, as a local method, ACJ makes a lot of false pre-

dictions on textured regions (e.g., floor of the first, sky of

the fourth image). In contrast, our method is able to de-

tect most junctions intersected by salient lines, while min-

imizing the number of false detections. This is no surprise

because our supervised framework implicitly encodes high-

level structural and semantic information of the scene as it

learns from the labeled data provided by humans.
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Figure 6. The precision-recall curves of different line segment de-

tection methods. Left: on our test dataset. Right: on the York

Urban dataset [7].

4.3. Line Segment Detection Comparison

In this section, we compare the wireframe results of

our method with two state-of-the-art line segment detection

methods, namely the Line Segment Detector (LSD) [45]

and the Markov Chain Marginal Line Segment Detector

(MCMLSD) [1]. We test and compare with these methods

on both our new dataset and the York Urban dataset [7] used

in the work of MCMLSD [1].

LSD [45]: This method is a linear-time line segment detec-

tor that requires no parameter tuning. It also uses an a con-

trario approach to control the number of false detections.

In this experiment, we use the code released by the authors4

and vary the threshold for − log(NFA) (NFA is the number

of false alarms) in 0.01× {1.750, 1.751, 1.752, ..., 1.7519}.

MCMLSD [1]: This method proposes a two-stage algo-

rithm to find line segments. In the first stage, it uses the

probabilistic Hough transform to identify globally optimal

lines. In the second stage, it searches each of these lines for

their supports (segments) in the image, which can be mod-

eled as labeling hidden states in a linear Markov chain. In

this experiment, we use the code released by the authors.5

Be aware that authors of [1] have introduced a different

metric than ours that tends to penalize over-segmentation.

Hence our metric can be unfair to their method. Neverthe-

less, our metric is more appropriate for wireframe detection

as we prefer to interpret a long line as several segments be-

tween junctions if it intersects with other lines.

Performance comparison. Fig. 6 shows the precision-

recall curves of all methods on our dataset and the York

Urban dataset, respectively. As one can see, our method

outperforms the other methods by a significant margin on

our dataset. The margin on the York Urban dataset is decent

but not so large. According to [1], the labeling of the York

Urban dataset is not as complete for salient line segments,

hence it is not entirely suitable for the wireframe detection

task here. Fig. 8 compares qualitatively the results of all

methods on our test data. Since the other two methods rely

on local measurements, they tend to produce many line seg-

4http://www.ipol.im/pub/art/2012/gjmr-lsd/
5http://www.elderlab.yorku.ca/resources/
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Figure 7. Junction detection results. First row: MJ (dmax = 20). Second row: ACJ (ǫ = 1). Third row: Our method (τ = 0.5).

Figure 8. Line/wireframe detection results. First row: LSD (-log(NFA) > 0.01× 1.758). Second row: MCMLSD (confidence top 100).

Third row: Our method (line heat map h(p) > 10). Fourth row: Ground truth.

ments on textured regions (e.g. curtain of the first image)

which do not correspond to scene structures.

5. Conclusion

This paper has demonstrated the feasibility of parsing

wireframes in images of man-made environments. The pro-

posed method is based on combining junctions and lines

detected from respective neural networks trained on a new

large-scale dataset. Both quantitatively and qualitatively,

the results of our method approximately emulate those la-

belled by humans. The junctions and line segments in a

wireframe and their incidence relationships encode rich and

accurate large-scale geometry of the scene and shape of reg-

ular objects therein, in a highly compressive and efficient

manner. Hence results of this work can significantly facili-

tate and benefit visual tasks such as feature correspondence,

3D reconstruction, vision-based mapping, localization, and

navigation in man-made environments.
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